

PAVIMENTANDO EL CAMINO HACIA UN FUTURO SOSTENIBLE

SEMINARIO INTERNACIONAL DEL ASFALTO

9 al 11 de Octubre, 2024, Monterrey, N.L.

EFICIENCIA EN LA PRODUCCIÓN DE MEZCLAS ASFÁLTICAS Ing. Ricardo Galvis C, MBA

Ing. Ricardo Galvis, MBA GERENTE REGIONAL

AMMANN

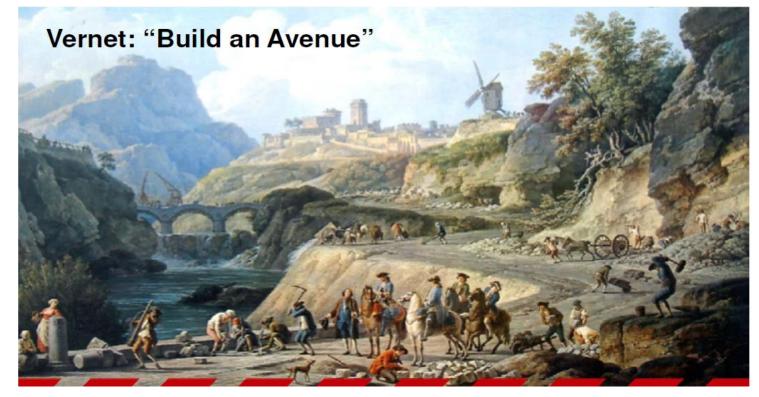
ricardo.galvis@ammann.com

https://www.linkedin.com/in/ricardo-galvis-0a499770

+506 83895719

Introducción

NO GRACIAS! ESTAMOS MUY OCUPADOS.



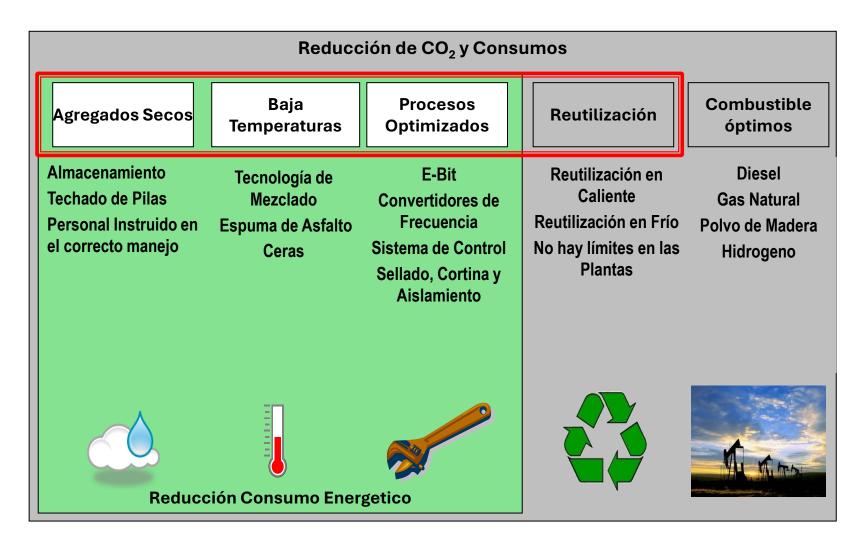
Tecnologías Eficientes

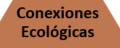
Promedio de la Industria

Altos Costos Operativos

Tecnologia Moderna Reducción de la Humedad (Techado) Bajas Temperaturas Creditos por reutilización y reciclaje Sistema de Secado Eficiente Aislamiento Optimizado

Redución de la Humedad (Bines) Altos creditos por reutilización y reciclaje Muy bajo costos operativos



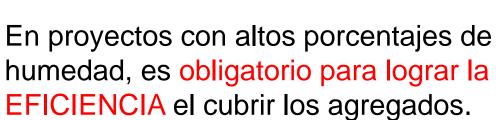


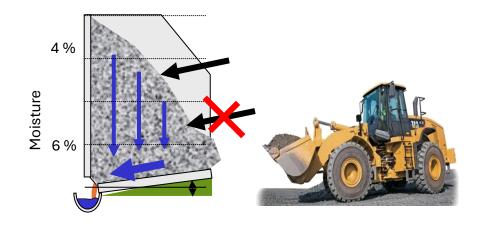
Tecnologías Eficientes

Agregados Secos

Techado -1% humedad

Agregados Secos





0.5 - 1.0% menos humedad: 0.3 – 0.7 kg menos de combustible

USO TOTAL DE ENERGÍA PARA LOS MATERIALES DE CONSTRUCCIÓN DE PAVIMENTOS MEZCLAS TIBIAS

TABLA DE ENERGÍA CONSUMIDA (MJ/T) – EMISIONES CO₂

La energia consumida y los gases de efecto invernadero emitidos durante la manufactura de una tonelada de producto final desde la extracción (mina, aceite, depósito, etc.) hasta la venta de la unidad del producto (refinamiento, planta de cemento, etc.)

unidad del producto (refinamiento, planta de cemento, etc.)					
Producto	Energia (MJ/t)	CO ₂ (kg/t)	Fuente de información		
Bitumen	4,900	285	Eurobitume		
Emulsión 60%	3,490	221	Eurobitume		
Cemento	4,976	980	Athena & IVL		
Aglomerante hidráulico	1,244	245	CED		
Agregardos chancados	40	19	Athena & IVL		
Agregados Pit-Run	30	10/2	Athena & IVL		
Acero/	U 25 0 L	43,540	Athena & IVL		
Linea rapida	9,	2,500	IVL		
Agua	10	0.3	IVL		
Plástico	7,	1,100	IVL		
Combustible	35	4.0	1\/1		
Producción de Mezcla de Asfalto Caliente	275	22	IVL		
Producción de Mezcla de Asfalto Templada	234	20	IVL		
Produccion de Asiano Ano modulo	209	23	IVL		
Producción de una Planta de mezcla en frío	14	1.0	IVL		
RAP de Superficies asfalticas	12	0.8	IVL		
In-situ Reciclado térmico	456	34	Colas MM		
In-situ Estabilización de reciclado en frío	15	1.13	IVL		
In-situ Estabilización de Cemento Soil	12	0.8	IVL		
Aplicación de Mezcla de Asfalto Caliente	9	0.6	IVL		
Aplicación de Mezcla de Asfalto en Frio	6	0.4	IVL		
Pavimentación de carreteras de Concreto Asfáltico	2.2	0.2	IVL		
Transporte en camión (km/t)	0.9	0.06	IVL		

Procesos Optimizados

Eficiencia de Tanques E-Bit vs Térmicos

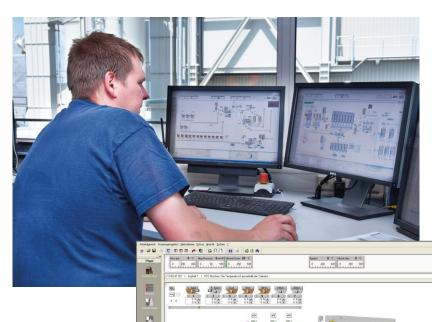
Comparison of a customers data

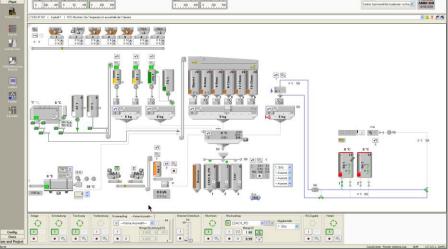
Site de	Type of		Production	- ·	Cost per	Energy	Heating oil
production	heating	Year	yearly	Cost	ton	need	consumption
			to/an	en€	en€	kWh / tonne	I / tonne
Rehda	Thermal oil	1992	117'000.00	20'920.00	0.18	2.50	0.28
Beekurveer	Thermal oil	1980	149'000.00	24'242.00	0.16	2.40	0.27
Langenfeld	Thermal oil	1986	90'000.00	35'399.00	0.30	6.39	0.73
Afen Bressert	Thermal oil	1985	110'000.00	25'647.00	0.23	3.50	0.40
Dornap	Thermal oil	1975	95'398.00	24'347.00	0.26	3.77	0.43
Hansa Asphalt	Thermal oil	1972	120'000.00	46'397.00	0.39	5.38	0.75
Emden	Electric	2004	133'000.00	11'970.00	0.09	1.00	0.00
Vonhaus	Electric	2001	300'000.00	13'770.00	0.05	0.51	0.00
Vonhaus 3	Electric	2001	61'750.00	10'948.00	0.18	1.97	0.00
Vonhaus 6	Electric	2001	167'390.00	26'368.00	0.16	1.75	0.00
Vonhaus 7	Electric	2001	79'538.00	19'542.00	0.25	2.73	0.00
KAM	Electric	2002	139'380.00	9'658.00	0.07	0.77	0.00

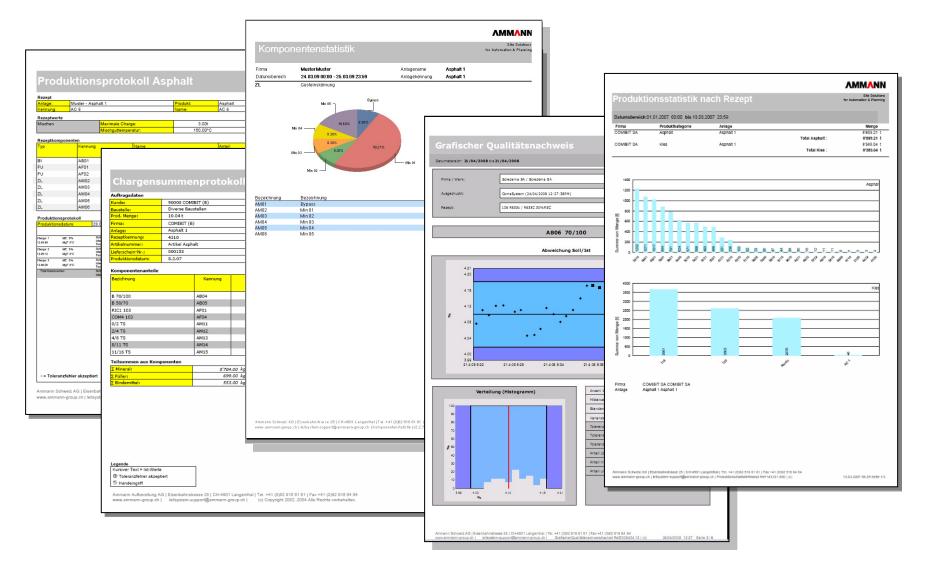
0.25 euros por tonelada

0.13 euros por tonelada

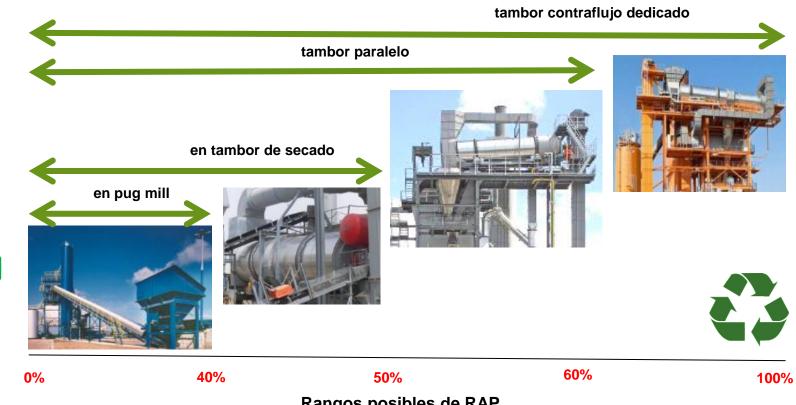
Sistema de Control - Mejora


Fecha:


Sistema de Control



Sistema de Control



Reutilización de Carpetas

DIFERENTES TECNICAS PARA MANTENER EL ASFALTO EN LA CARRETERA

Rangos posibles de RAP

Regla de las 3 erres

1.Reduce 2.Reutiliza 3.Recicla

Reutilización de Carpetas

Regla de las 3 erres

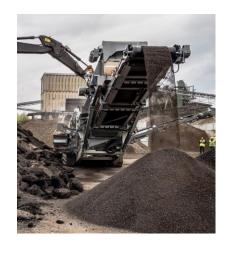
1.Reduce 2.Reutiliza 3.Recicla

amaac.org.mx

Cual seria las principal recomendacion de manejo del RAP para reutilizarlo en mezclas asfálticas?

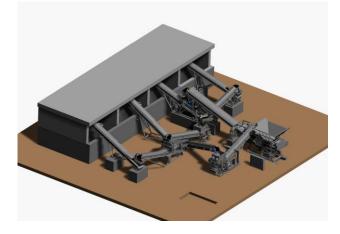
¿En cuantas fracciones se recomienda separar el RAP?

Disgregado y Cribado / Materiales 0/16 o 0/22 o 0/32



Disgregado y Cribado / Materiales 0/8 y 8/22

Disgregado y Cribado / Materiales 0/8, 8/16 y 16/32



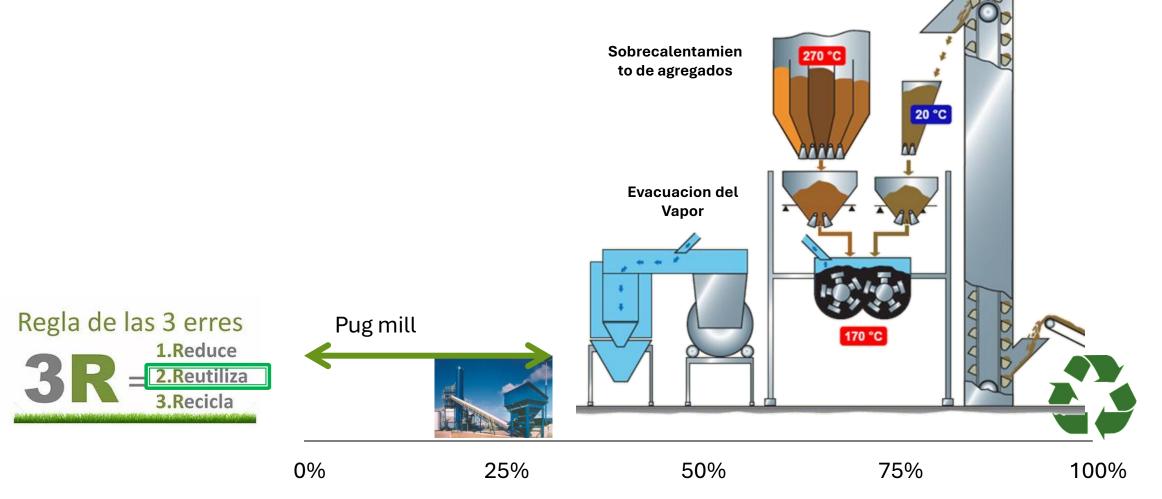
Entre 30% y 60%

%09 de Mas

RAP- Alimentacion

Los alimentadores de RAP deben ser diseñado en funcion de la meta

Reciclando Asfalto: Deposito



Posibles rango de RAP

Regla de las 3 erres 1.Reduce 2.Reutiliza 3.Recicla

0% 25%

Tambor de secado

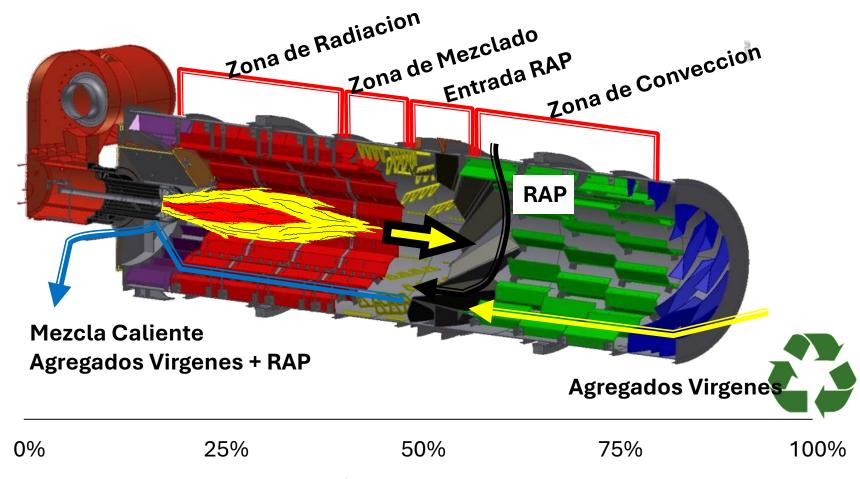
75%

100%

Posibles rango de RAP

Fecha:

50%

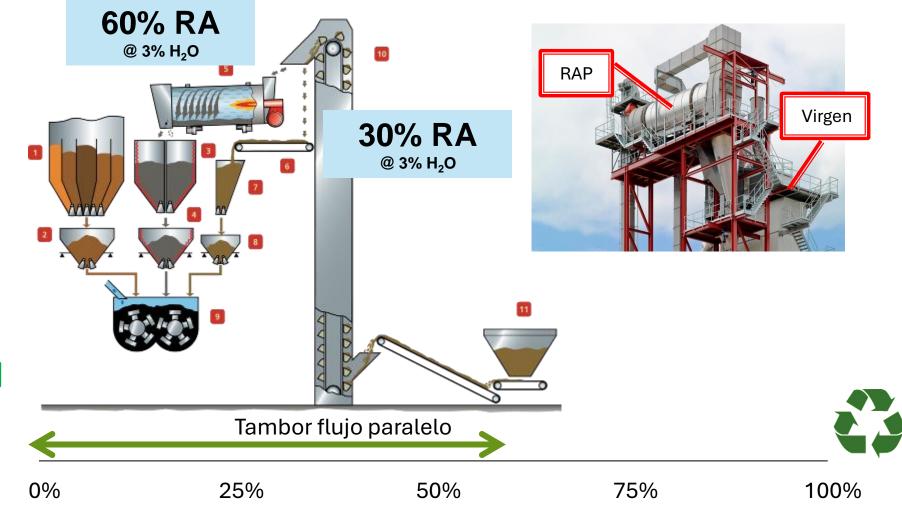


Posibles rango de RAP

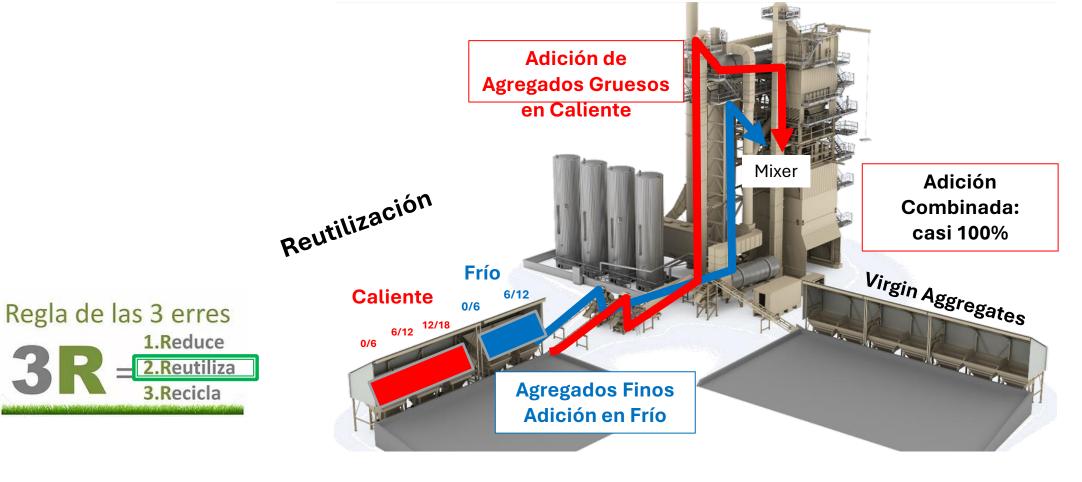
1.Reduce

Tambor flujo paralelo 0% 25% 50% 75% 100%

Posibles rango de RAP



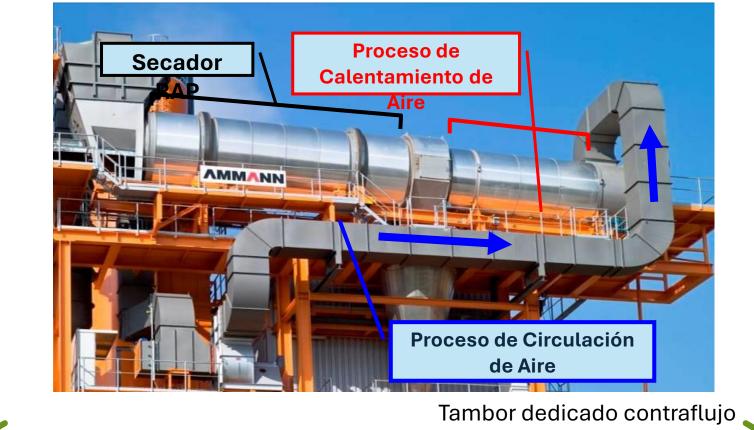
Regla de las 3 erres



Regla de las 3 erres 1.Reduce 2.Reutiliza 3.Recicla

Posibles rango de RAP

Un nuevo concepto completo de tecnología de alta reutilizació



Regla de las 3 erres 1.Reduce 2.Reutiliza

> 0% 50% 75% 100% 25%

> > Posibles rango de RAP

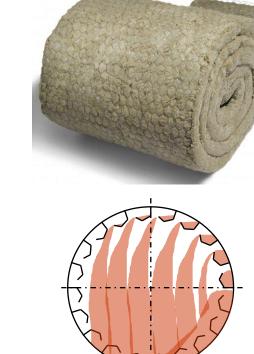


3.Recicla

Regla de las 3 erres 1.Reduce 2.Reutiliza 3.Recicla

enlinea.amaac.mx

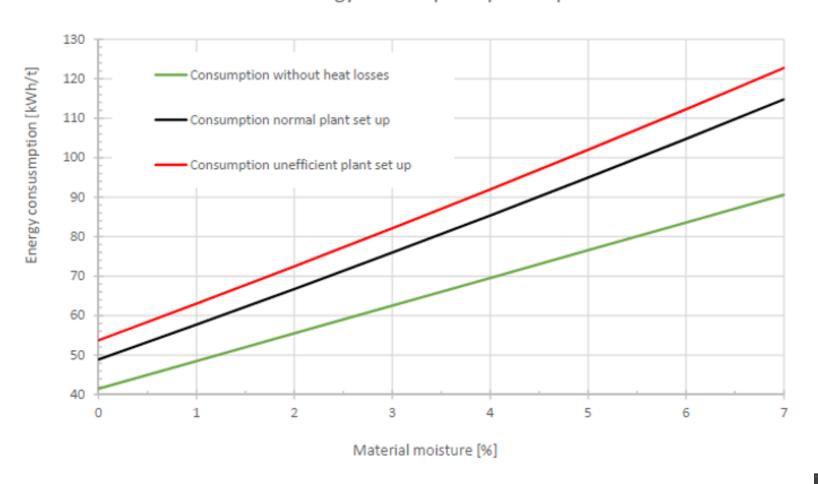
Sellado y Aislamiento



Secador sellado con junta tipo Laberinto y Aislamiento

2.0 – 3.0 kg menos de combustible





Combustibles Óptimos

Thermal energy consumption per t asphalt

Here he see some factors for CO2:

Natural gas: 0.2 kgCO2/kWh

Light oil EL: 0.266 kgCO2/kWh

Heavy oil: 0.288 kgCO2/kWh

Combustibles Óptimos

Tipicos valores caloricos por combustible y emisiones

Electricidad	3.6 MJ/kWh	~ 1.0 kWh/kWh	0.5 kg CO2/kWh
Gas Natural	36.2 MJ/m ³	~ 10.1 kWh/Nm³	2.2 kg CO2/m ³
Propano LPG	46.4 MJ/m ³	~ 12.9 kWh/Nm³	3.3 kg CO2/m ³
Diesel	42.7 MJ/kg	~ 11.9 kWh/kg	3.1 kg CO2/kg
Aceite Pesado	40.2 MJ/kg	~ 11.2 kWh/kg	3.2 kg CO2/kg
Lignito (BKS)	22.1 MJ/kg	~ 6.1 kWh/kg	2.4 kg CO2/kg

Conclusión

Promedio de la Industria Alto Consumo de Energia Nivel Alto de Emisiones

Altos Costos Operativos

Tecnologia Moderna Bajos Niveles de Consumo Bajo Niveles de Emisiones

Bajo Costos Operativos

Plantas Optimizadas Muy Bajo Consumo Energetico Muy bajo niveles de emisiones Amigable con los vecinos

Muy bajos costos operativos

SIMPOSIO GUATEMALTECO DE PAVIMENTOS ASFÁLTICOS

Tecnologías Eficientes

 Ahorros del 63% en 550.000 ton producidas en un año

 Ahorros de un 38% en 60.000 ton producidas en un año

FICIENC!

CONCLUSIÓN

EN LOS NEGOCIOS SOLO EXISTEN DOS REGLAS: REGLA NÚMERO 1: NUNCA PERDER DINERO. REGLA NÚMERO 2: NUNCA OLVIDAR LA REGLA NÚMERO UNO

WARREN BUFFET

¡Muchas gracias!

Ing. Ricardo Galvis C, MBA

ricardo.galvis@ammann.com

https://www.linkedin.com/in/ricardo-galvis-0a499770

+506 83895719

enlinea.amaac.mx

AMMANN